
Objects as Closures: Abstract Semantics of
Object Oriented Languages1

Uday S. Reddy2
Department of Computer Science University of Illinois at Urbana-Champaign

Net: reddy @a. cs .uiuc.edu

Abstract

We discuss denotational semantics of object-oriented languages, using the concept of
closure widely used in (semi) functional programming to encapsulate side effects. It is
shown that this denotational framework is adequate to explain classes, instantiation, and
inheritance in the style of Sirnula as well as SMALLTALK-80. This framework is then com-
pared with that of Kamin, in his recent denotational definition of SMALLTALK-80 , and the
implications of the differences between the two approaches are discussed.

1 Introduction

Object-oriented languages, such as s M A L L T A L K - 8 0 3 [9], have recently received a lot of atten-
tion. However, the term “object-oriented” does not seem to have a widely accepted meaning. .

It is sometimes used to refer to the presence of data objects with local state, sometimes to the
notion of class inheritance, and sometimes to the specific notion of inheritance in Smalltalk
which involves a kind of “dynamic binding”. The first of these notions, viz., objects with lo-
cal state, has long been used in the functional programming community to encapsulate “side
effects” whenever they were necessary [l, 111. These are sometimes losely referred to as clo-
sums. A closure is essentially a function or a data structure containing functions with some
local bindings to values or storage locations. In describing the semantics of object oriented
languages, it seems natural that such a notion of closure should play a central role.

SMALLTALK and other object oriented languages, of course, go much beyond data objects
with local states. They allow classes to be defined, objects to be created as instances of classes,
class descriptions to refer to the receiving object in terms of self, and subclasses to be derived
from superclasses. Whether all these concepts can be explained in terms of closures is an
interesting question. If so, the denotational semantics of object oriented languages can be
defined in terms of closures. This paper answers this question in the affirmative and presents
such a denotational semantics.

In a recent paper [lo], Kamin presented a denotational semantics for S M A L L T A L K - 8 0 using a
different framework. Here objects are interpreted denotationally as pairs of local environments
and references to class denotations. The denotations of classes are defined independently of
the objects that receive messages. The essential objection we raise against this scheme is that
the semantics is not sufficiently abstract. From the point of view of the user of an object, an
object simply responds to a set of messages. So, the meaning of an object should simply be

‘This paper is to appear in 1988 ACM Conference on Lisp and Functional Programming, Snowbird, July,

’This research is supported in part by NSF grant CCR-87-00988 and NASA grant NAG-1-613.
3“SMALLTALK-80” is a trademark of ParcPlace Systems. We use here a language called “SmallTalk” (with

1988. @ACM, 1988. All rights reserved.

different capitalization) as an abstraction of SMALLTALK-80.

an environment binding message names to their methods (message environments). There is no
need for the local environment of an object to appear in its denotation. Our presentation of
the semantics interprets objects precisely as message environments.

To present the semantics, we discuss a series of small abstract languages. Firstly, Object-
Talk is a language in which objects can be defined, but no classes. In the second language,
ClassTalk, classes can be defined and objects can be created as instances of classes. The third
language, called Inherit Talk, provides subclasses to be defined by inheriting from other classes.
The bindings of messages used by superclasses are not affected by inheritance. The inheri-
tance of Simula [7] and C++ [18] work in this fashion. Finally, we define a language called
SmallTulk, which implements inheritance in the style of SMALLTALK-80, by rebinding messages
in subclasses. It is shown that ClassTalk and InheritTalk are extensions of ObjectTalk, i.e.,
they do not alter the denotations used in earlier languages. But, SmallTallc requires a radical
restructuring of the denotations.

In addition, we restate the semantics of Kamin in our notation and formally establish
their correspondence by showing a homomorphism from Kamin’s semantic domains to ours.
There does not exist a homomorphism in the other direction, because Kamin’s domains contain
strictly more information (and hence are less abstract) than ours.

2 Denotational Framework

Our style of presentation will be to consider a series of little abstract languages with increasingly
more expressive power. For obvious reasons, we will not treat a full language, but only those
portions which are of interest to object-oriented programming. To set the context, let us first
give some examples of syntactic constructs:

2, y E variable
e E expression

e ::= x
e ::= valof e
e ::= x : = e
e ::= let x = e l in e2

Here, we have OLJ two kinds of syntactic objects variable and expression, anc, three kinds
of expression constructs. For pedagogical reasons, we use the dereferencing operator valof to
access the contents of a location. (It allows us to use a single semantic function, rather than
two separate ones for the I - and r-values of expressions).

Conventionally, the meaning of an expression 1171 is of the type

env + state -+ vu1 x state.

So, an expression valuation [e]qc is some (v , ~ ’) . The bindings of free variables in e , which
may be values or locations, are obtained from 7, and the contents of locations are obtained
from the state u. Our semantic domains and a sampler of semantic definitions are given below:

2

z,y E variable
a E loc

v , w E val = basicVal+ loc + -
7 E env = variable + val
u E state = loc-t val

[-] : env 4 state -+ (val x state)

Let us make a few comments about our notation. The symbol ? denotes an error value. We
do not elaborate its meaning any fwther. (See I171 for a detailed discussion). Environments
and states are finite functions, and we often need to update them (like in the semantics of
assignment above). The notation

f[z-+vl

means a copy of the function f that maps z to v, leaving everything else unchanged. We also
use the notation

f [zl +v1, * *, z&+vk]

when we need to update the mapping of several values simultaneously. A third notational
device is

f; f’
which means updating o f f with all the bindings o f f ’ (note: f’ should be a finite mapping).
The symbol 771 denotes the empty environment and u~ deontes the empty state.

The notion of closure arises from the fact that expressions may have free (nonlocal) variables.
The type env + state --f (V a l x state) shows that an expression valuation depends on an
environment and a state. Given both, the value of the expression is k e d . Now, consider a
procedure valued expression with free variables, e.g.,

let f () = (z := valof y) in f

The “value” (i.e. the val part in the above type) of such an expression is, in turn, of the type

procedure = state + Val* -, (V a l x state)

3

It can be applied in some state u to some tuple of values 5, producing a result value and a new
state. The environment at the point of its application does not affect its meaning. Thus, if the
definition of f is evaluated (not applied) in an environment q with q z = a1 and q y = a2, then
the value of f is

c z Xu. A(). ((u a2), u[a1+ (u q)])

The variables z and y have been replaced by their bindings a1 and a2, and this procedure will
forever transfer the contents of the location a2 to the location al. A procedure value, such
as c, is called a closure. The expression of which it is a value may have had free variables.
But, they have all been eliminated before we obtain the value. The closure itself now does not
“depend” on any variables. We can also conceive of languages (like Lisp) in which the meaning
of the procedure depends on the environment at the point of application. Then, a procedure
value should take as its parameter. Such a procedure value is not a closure.

Another programming language feature concerned with closures is the declaration of mu-
table variables in local contexts. To make this precise, let us add another construct to our
example language:

e ::= local z; e end

Its semantics is given by

[local z; e endlqu =
let a = newloc u

- new location for z

- allocation of the location

- local environment for e

u1 = extend u a

771 = 4 2 : -4

in uen q1 u1

This sequence of definitions arises so often in this paper that we introduce a new function d o c
for it:

ulloc u 2: = let a = newloc u (2)
u1 = eztend u a
770 = 771[z--t4

in (70 , Ul)

Now, (1) can be simply rewritten as

Returning to our discussion of closures, suppose the expression e in such a context defines and
returns a procedure, like in

local z; let f() = (z := valof y) in f end

then the location assigned to z is built into f . Moreover, only f can access this location. The
rest of the program can affect the value of the location only by calling f . It is often said that,

4

in such a situation, the location of z makes up the local state of f . More accurately, f has an
exclusive “local window” on the global state (since it can access or modify the rest of the state
as well). The rest of the program has neither access to, nor concerned with, the structure of
this local window or the variables used for accessing it.

We will show that objects in object oriented languages can be modeled by such closures
with local windows to the state. Further, the model can be extended to cover the notion of
classes and inheritance as well.

We end this section with a table of the other semantic domains that we introduce in the
subsequent sections. This should aid the reader as a quick reference.

- o E objectval - menu
p E menu = message -P method
p E method = state -, Val* ---* (va l x state)
[E classval = state -+ (m e n u i state)
$ E superclassval = state -, (env x (menu -+ m e n u) x state)

3 ObjectTalk

The simplest of our abstract languages is ObjectTalk. In this language, an object can be defined
using the syntax

e ::= obj (21,. . ., 2,) (ml (5) = e l , . . .,mk(K) = ek}

Here zl, ..., zn are the local variables of the object (also called instance van’ables), and
m1, ..., m k are the “messages” (or operations) that the object responds to. The definition
of a message is called its “method”. There is no notion of a class. However, methods can
create objects each time they are called, so the effect of classes can still be achieved by objects.
The syntax for sending messages to objects is

e ::= e , .m(c)

where e, is the receiver object, m is the message and c are the argument expressions. The
following definition of a point object illustrates these constructs:

P = obj (2, Y>{

(4)
p t (a , b) =

closer(q) = self.dist() < q.dist() }

begin z := a; y := b end,
d i s t () = sqrt(sqr(val0f z) + sqr(val0f y)),

This declares two local variables z and y for the coordinates of the point, and three messages.
The message put takes two parameters for the z and y coordinates and sets the local variables
to these coordinates. The message dist gives the distance of the point from the origin. Finally,
closer takes another “point-like” object q as a parameter, and checks if this point is closer to
origin than q. The special variable self denotes the very object that is being defined (p , in

5

this case). We could have used p in place of self. But, note that p is an external name being
given to the 0 6 j expression. We would want to define objects without giving them names. The
variable self is useful to refer to the object, in such contexts.

What should objects denote? F'rom the point of view of a user, an object simply responds
to a set of messages. So, the meaning of an object should simply be an environment binding
messages to their methods (message environments). The summand objectval of vu2 can thus
be defined by

p E objectval = menu = message + method
p E method = state + Val' + (val x state)

The domain method is similar to the type of procedure values discussed in the last section.
Here is our semantics for obj-expressions:

[obj(z){mi(E) = ei}JJqu =
let (q,, u1) = alloc u Z

- value environment of the object

- message exivironment
p = Pl[mi --+ w. A=. uein (7; q O [~ + - - , l) 41

in (P , 4
The function d o c is as defined in (2) except that it is extended to deal with tuples of variables.
Note that the message environment p produced as the value of the object expression is a closure,
since the local environment qo is completely absorbed in it. Thus the object has an exclusive
window to the locations allocated in qo.

This semantics is not yet complete because we would like to have recursive references
to an object's messages in the methods defining those messages. This recursion is achieved
indirectly by sending a message to the special variable self. For example, the object p defined
in (4), invokes its own dist message in the method of closer using self. The use of self can be
accommodated in our semantics as follows:

'.

The only change is in the environment in which the method-expressions are interpreted. We
bind the variable self to the message environment p that is being constructed for the object.
But this makes the definition of p recursive, and we resolve it by introducing the k e d point
operator f i z . The use of fixed points to model references to self first appeared in [4].

The meaning of a message send is defined as follows:

[e , .m(E)JJv = let (p,al) = [[e,JJqu

(w 2) = [rqlqn
- message environment of e ,

- values of arguments
i n p m u 2 C

6

Using the semantic definitions (5) and (6), the meaning of the point object p defined in (4) can
be expressed as follows. Let a, and ay be two locations that can be allocated in the current
state.

p p = fiz (Xp. [put +

X(wa,wb). (wb, a [a z + w a , a y + w b]) ,

dist +

closer +
Xa. X(pq) . let (v l , a l) = pdist a ()

(u2, Q2) = Pq dist 6 1 0
in (Ul < u2, 6 2) I)

Since this recursion converges finitely, we can simplify it to:

Pp = [P t +

X(wa, Wb). (wb, b[% ---$way a y + wb]),
dist ---$

Xu. A(>. (& + (Q L y y) 2 , a) ,
closer + (7)

~ a . x (p q) . let ul = ,/(o a,)2 t (a ay>2

in (01 < v2, Q 2) I
(V 2 , 6 2) = Pq dist 0

Another idea we can think of is to let each object look at its own local state, without
having a single global state that is modified by each method. Though appealing, this idea does
not work. The reason is that methods can affect not only the object’s local state, but also
the states of objects passed as arguments. So, it is not possible to define the denotation of a
method as a function of the local state alone. Instead, our semantics passes the global state
to every method, but permits it to directly affect the local state only. The value environment
incorporated in a method (qo) only gives it a “window” on the local state.

4 ClassTalk

In this language, we introduce classes without inheritance. The syntax is similar to that of
objects:

Instance objects of classes are created by the expression

e ::= class (21,. . ., z,) {ml(jji) = e l , . . . , m k (~) = e k }

e ::= new e,

Now, we can define a generic point class instead of a specific point as in (4):

point = class (z, y){
put(a, b) =

closer(q) = self.dist() < q.dist() }

begin z := a; y := 6 end,
&st() = sqrt(sqr(va1of z) t sqr(valof y)),

7

Every evaluation of new point yields a new instance of point.
The semantics of classes should naturally satisfy the property

(9)
[new class(z1,. . ., z n) { r n l (~) = e l , . . . , r n k (s) = e k }]

= Uobj(z1,. . . , GJ{~I(E) = e l , . . . , m(Z) = ek}D

since instantiating a class expression to get an object is the same as directly using an obj-
expression. So, the class construct provides an abstraction which can then be invoked to obtain
an objectval. The simplest such abstraction is the domain

< E classVal= state + (rnenv x state)

and we add it as a new summand to the val domain. A classval does not give ,a message
environment in itself, but yields one when “instantiated” in a state. This.in turn is accomplished
by new.

[class(Z){rn;(j$ = e i }]qu =
(Xu’. let (qo,u:) = alloc u’ Z

p = f i z (X p . pL[rn; +

(Xu. A=. [e ;] (7; q , , [~ - + E, self + p]) u)
I)

(10)

in (P , 4) ,
4

Note that a class-expression does not change the state. It merely denotes a template for creating
new objects. (Thus, we could have interpreted class expressions without reference to a state.
The reason for not doing so is pedagogical. It allows us to use a single semantic function for
all syntactic constructs). The meaning of new is to invoke the template:

Classes do not add any expressive power to ObjectTalk owing to the equivalence (9). Ln
fact, the effect of classes can be achieved in ObjectTalk by the following translation

class(Z){%} = obj(){new() = obj(Z){%}}
new c = c.new()

However, ClassTalk has an advantage from a software engineering perspective. There are good
reasons to disallow free variables denoting objects in obj or class expressions. That way, we can
treat every object as a self contained unit. In fact, in Smalltalk-80 no free object references are
allowed in class descriptions. But, we do want class descriptions to refer to other classes. This
is like importation of modules. The above simulation of classes in terms of objects does not
allow such preferential treatment to free class references. So, even without inheritance, classes
are useful.

The semantics we are presenting does not model the restriction that class expressions may
not have free references to objects. But, it would straightforward to model the restriction by
splitting the environment into a class environment and an object environment.

8

5 Inherit Talk

In this language, we introduce a simple form of class inheritance. A subclass of another class
can be expressed by the construct:

e ::= subclass e, (21,. . .,z,,) { m l (~) = e l , . . . , m k (~) = e&}

An instance of such a subclass would have all the variables 21,

2, as well as the instance variables of the superclass e,. Similarly, it would accept all the
messages ml, , . . , m k as well as the messages specified in e,. There is also a notion of over-
riding. That is, if a message m is specified in both the superclass and the subclass, then o.m
is interpreted as the method defined in the subclass. However, the behavior of instances of e,
are (reasonably) not modified by the subclass specification. This is similar to the overriding
caused by statically nested scopes, In fact, our semantics of inheritance in InheritTalk closely
follows that of nested scopes:

...,

When instantiated in a state u’, the classval of the subclass first instantiates the classval, 6,
of the superclass. This yields a message environment pe . The subclass then allocates storage
for the additional instance variables E , and yields the message environment p. This message
environment is obtained by updating the environment pc produced by the superclass with new
message bindings for m;. The essential difference between this and the semantics of the class
construct (10) is in the use of p, instead of p l in constructing p. The class inheritance of
Simula [7] and C++ [18] work in this fashion (when virtual functions are not used).

6 SmallTalk
Note that, in InheritTalk, the variable self means different message environments in a superclass
and its subclass. I t can be justifiably argued that self should denote the message environment
of the receiver object, and therefore should have the same meaning in both classes. Consider,
for example, the following subclass manpoint (for Manhattan point from [lo]) of the point

9

class:
point = class (z, y){

put (a , b) = begin z := a; y := bend,

closer(p) = seIf.dist() < p.dist() }
d i s t () = sqrt(sqr(va1of z) t sqr(valof y)),

manpoint = subclass point (){
d i s t () = (valof z) t (valof y)}

manpoint inherits put and cZoser messages from the point class, but uses a different notion of
“distance from origin” (the s u m of the z and y coordinates). We want to be able to compare
manpoints using the closer operation inherited from the point class. But, such a use of the
closer operation should use the dist method defined in manpoint rather than that defined in
point. Note that InheritTak does not achieve this kind of inheritance. What is inherited by
m a n p ’ n t in InheritTalk is a fixed behavior of an object as a point, as in (7). The recursion over
self is already resolved in such behavior, and closer can only compare the Euclidean distance.
But, inheritance in SMALLTALK-80 does not make such early commitment to the meaning of
self. Any instance of manpoint consistently uses the new method for dist defined in the subclass
definition. Similar inheritance can be achieved in C++ using “virtual” functions. We call this
form of inheritance dynamic inheritance (and, by contrast, the inheritance of InheritTalk static .

inheritance) since the meaning of self is not determined statically by the class expression in
which at appears, but dynamically when the class is instantiated.

This form of inheritance poses an interesting semantic issue. If manpoint inherits the
“behavior” of closer from the point class, then closer cannot behave differently in the instances
of point and the instances of manpoint. So, what is inherited from point is the “behavior of
closer parameterized by the behavior of self”. This means that the semantic description of a
class-expression cannot directly bind self. Its binding would be known only when the class is
instantiated by new. So, the meanings of class-expressions would now involve transformation
finctionals of the kind

r E m e n v + m e n v

We can think of r as accepting the m e n u of self as a parameter, and producing a new menv
for self. Such functionals were also involved in the semantics of ClassTalk and InheritTalk; but
we could immediately eliminate them as we were only interested in the fixed points of such
functionals. This we cannot do for SmdTalk.

Another semantic issue of SMALLTALK-80 that we would like to model is that the instance
variables specified in a class c are visible to its subclasses. For instance, manpoint references
the instance variables z and y specified in p o i n t . This means that it is not possible to hide the
local environment in a class definition. These two issues motivate us to replace the subdomain
classval of val by

II, E superclassval = state --t (env x (m e n v -+ m e n v) x state)

The superclassval of a class is its meaning as seen by a subclass of it. But, to instantiate a class
using new, we need its classval. The following mapping dose shows that the superclassval

10

has all the information needed to determine the classval:
close : superclassval + classval

close 1c, = Xu. let (q , 7, ul) = $a
in (fiz 7, ul)

When instantiated in a state a, a superclassval produces a triple (q , 7 , q) . If the instantiation
is done using new, then the environment q is ignored, and the fixed point of 7- is produced
as the object. If the instantiation is from a subclass, then the subclass can extend q with
additional variables and T with additional messages, to produce another such triple.

The syntax of SmallTalk is the same as that of InheritTalk. Only the semantics is different.

[class(z){m;(E) = e i }]qu =
(Xu‘. let (qo, 6:) = alloc u’ z

77’ = 7; 770
7- = Xp. p1[m; +

(Xa. ATE. [e i] (q’[E-+ z, self -+ p]) a)
I -

in (770, f , C:),

4
The major difference between this and the semantics of class-expressions in ClassTalk is that
instead of producing a message environment as a fixed point of a transformation functional (T),
it produces the functional itself.

The meaning of a subclass of e , is.as follows. When instantiated in a state, it first instanti-
ates e,, extends the local environment created by e,, and then extends the menv transformation
functional determined by e,.

[subclass e,(?E){m;(E) = e i }]qu =
let (+,Ul) = uecnqu
in (Xu‘. let (qc,7-,,u:) = +u’

(q,, ui) = alloc a: z
77’ = 17; 77c; 770

T = xp. r,p[m;-+

I
in (17’9 7 - 9 4) ,

(Xu. ATE. [e i] (q’[E+ E, self + p]) r)

0 1)
The significant part of this semantics is the definition of 7. Given a binding p of self, 7-p first finds
7-,p (the menv determined by the superclass e,) and then extends it with new message bindings.
This technical meaning of SMALLTALK-80 style inheritance was independently discovered by
Cook [6].

SMALLTALK-80 also has a special variable super which, appearing inside a method expres-
sion, denotes the receiver object viewed as an instance of the superclass. This can be modeled
by modifying the environment used for method expressions e; to be

v’[g+ G, self -+ p, super -+ 7 - 4

11

The semantics of new is to close the superclassval to a classval and instantiate it in the
current state:

[new eC]7g = let ($,q) = [e,]r]a
in close .rl, Q

Let us use the point and manpoint classes to illustrate these semantic definitions. To make
the meanings intuitive, we use an informal description. The menu transformation functionals
(for an object with local environment 7,) are

~point[~o] = X P . [ptlt + set 702 and V ~ Y ,

I
dist -, Euclidean distance,
closer + compare p dist and argument’s dist

~ m a n p o i n t [~ o] = b. [put --* set 7102 and ~ O Y ,

1

dist -, Manhattan distance,
closer + compare pdist and argument’s dist

Notice that only the binding of dist is changed. When we close the superclassvals for instan-
tiation, we get the respective menus as fixed points:

Ppoint[701 = [put + set 902 and 7oY,
dist + Euclidean distance,
closer -, compare Euclidean distance and argument’s

dist
1

~manpoint[qo] = [pzlt + set 702 and VOY,
dist ---* Manhattan distance,
closer -, compare Manhattan distance

1
and argument’s dist

This illustrates that SMALLTALK style inheritance occurs at the supercZassvaZ level rather
than at the classval level. This fact can be used for reasoning about object oriented programs
as follows. When a class (or a subclass) defined, we cannot make any assumptions about
the behavior of self except that it looks something like the menv being defined. When a
class is instantiated, the instance object fixes the meaning of self and its behavior becomes
determinate. Another way to think about programs is by giving two meanings to each class, in
terms of superclassvals and classvals. The superclassval meaning is as just mentioned. The
classval meaning assumes that self has the same behavior as the menv being defined. In this
view, we have to remember that what is inherited is the superclassval and what is instantiated
is the classval.

The fixed point involved in the above semantic definition merely models the recursion in-
volved in references to self in class definitions. There may be another other kind of recursion
involved in an object-oriented program. This involves class references rather than object ref-
erences: the description of a class may create its own instances. This can be mutual recursion
as well, with two classes creating each other’s instances. All such recursions would be built

12

into the environment 7 which we are assuming to be available in all the semantic definitions so
far. To illustrate this, we will add yet another construct to SmallTalk. This will also facilitate
comparison with the semantics of Kamin who uses a similar construct:

e ::= hierarchy z1 = e l , . . . , z,, = e, in e

We intend that a construct like this be used at the top level of a program. All the expressions
e; are restricted to be class-expressions and the only free variables in them are the class names
z l , . . . , 2,. These variables can then be used in the body expression e. The semantics of this
is fairly conventional:

We call the fixed point involved in this construction an environmental fized point to distinguish
it from the fized point over self which we have seen before.

7 Relation to Kamin’s Semantics

As mentioned in the introduction, Kamin [lo] used different framework for describing the
denotational semantics of SMALLTALK-80. Our work grew out of the contention that this
semantic description was not sufficiently abstract. In this section, we make this observation
concrete by comparing the two semantic descriptions. First of all, let us reexpress Kamin’s
semantics in our notation. The semantic domains are given below. We subscript the domains
involved in Kamin’s semantics by K . References to our semantic domains in this section are
subscripted by A (for “Abstract”) to distinguish them from the former.

V ’ W E valK
7 E envK
u E stateK
p E menvK
p E methodK

o E ObjeCtValK
c E classname
(E classvalK

= basicval+ loc t ObjectvalK + classvalK
= vaTiable --+ valK

= message --+ methodK
=

= envK x classname

= loc --+ valK

stateK + objectvalK --+ vu& --+

(valK x stateK)

= variable’ x menvK

13

The domains methodK, objectvalK and ChssvdK differ from ours. The meaning of a class
expression is given by:

[class(z){mj(g) = e;}jqu =
let p = pl[m;+Xu. Xor. A=. let (qr ,cr) = or

in [e;](q; q,[E-+c, self +o,])u]

in ((z , P) , 4
Let us cut through the formalism to indicate what is going on here.

1. The denotations of objects contain a local environment and a classname. The latter in
turn determines a message environment. The local environment is not hidden as in our
semantics. Moreover, this description involves unconventional use of the syntactic domain
classname. Traditionally, denotational descriptions only use names as input domains of
environments. But, here classname is being used in the semantic domain objectvalK.
As we will shortly see, this indirect referencing of classes from objectvals is critical to
Kamin’s semantic description.

2. The denotations of classes, likewise, contain the local instance variable names in addition
to the message environment. Message environments are associated with classes rather
than with objects.

.

3. The denotations of methods take an implicit argument denoting the receiver object or, in
addition to the arguments supplied in a message send. Since the denotations of methods
are defined in the context of their classes, the receiver of the message is completely
unknown a t this point. So, it is necessary to make a method a function of the receiver.
References to self in a method definition are interpreted as references to this implicit
argument (Cf. the environment used for inbracketse; in the semantic definition).

4. There is a kind of dynamic binding involved in the interpretation of method expressions.
The environment qr is obtained dynamically as part of the parameter or to the method,
but is used for binding the free variables in e.

The semantics of instantiation and message send clarify these points. (We first define an
auxiliary function to look up the menu of a class in an environment):

Unlike our semantics of ClassTalk or SmaLlTalk, there is not yet any recursion in this semantic
description. There seem to be two reasons for this. Firstly, the methods are defined as functions

14

of the receiver objects. So, there is a delayed self-reference here. Secondly, the use of classnames
also involves a delayed self-reference. If, for instance, we directly use the environment p instead
of classname c in objectval, then the semantics of message send would involve,a self-application
of p:

P m Q2 (70, P) 7j

This may then introduce implicit recursion. All these delayed recursions are pushed into the
environment 7. Consider again, the point class we have mentioned before:

point = class (2, y){ put(a , b) = begin z := a; y := b end,
d i d () = sqrt(sqr(va1of z) + sqr(valof y)),

closer(p) = self .dis t () < p .d i s t () }

The environment q is needed to look up the menv components of the classes cr and cp.

of the hierarchy construct.
The delayed recursions are then captured by the environmental fixed point in the semantics

In [lo], the functional 4 and the environment q are given by two separate semantic functions
D and C of the hierarchy. When the definition of the class p o i n t is given in such a hierarchy
construct, the fixed point construction allows us to consider every possibility for the classes cr

15

and cp. If p o i n t is the only class defined, then we have

p e n t = [pz~t +

Xu- A(’?,,‘-%)- X (W a , W b) * (Wb, U[qrz+Wa, qr!+’+Wb]) ,

Xu. X(qr, G). A(). (J u (q 7 ~) ~ + a(qrY)2, u),

Xu- X(flt ,cr). X ((~ p , c p)) -

dist -+

closer --$

c, = p o i n t A cp = point +

let 01 = Ju(qrz)2 t u(qr!+’)2

212 = J a (7 P 4 2 t Q(77pY)2

in (VI < 172, u);
1 1

If the hierarchy has two other classes, say line and manpoint both of which have a message dist,
then the binding of closer in pp.nt would define separate results for each of the 9 combinations
of c, and cp. If m u n p ’ n t is a subclass of paint but line is unrelated, then it is certainly
meaningful to handle the case c, = m a n p o i n t because the receiver object may well be an
instance of manpoint; but, the case c, = line would never arise. So, passing the receiver object
as an implicit argument to a method is somewhat an overkill.

The set of possibilities for the menvs of both the implicit and explicit arguments in this
semantics is finite (the set of classes defined in the hierarchy construct). On the other hand,
in our semantics for SmallTalk, there is only a single possibility for the implicit argument
(determined at the time of instantiation) and the set of possibilities for the explicit arguments
is unrestkted.

The semantics of inheritance in this framework is quite straightforward:

[subclass c (z){m(B) = e}]qu =
let (%,Pc> = 71c

in ((z - c , P) , 6)

p = pC[m+ Xu. Xo,. XF. let (q,, c,) = or
in [e] (o ; q , [j j - + ~ , self -+07])u]

There is no need for superclassval because the message environment of self is obtained directly
from the implicit argument denoting the receiver. Or, viewed a little differently, a classval
in this framework is indeed like our superclassval because each method takes a parameter
denoting self.

In summary, the denotations in Kamin’s semantic description contain strictly more infor-
mation than our denotations and hence are less abstract.

7.1 Classes as types

We should not, however, dismiss Kamin’s framework as being just too low-level. It provides
an important alternative view point of object oriented programming.

In our entirement treatment of object oriented languages, we have viewed classes merely as
abstractions (procedures) used for generating instance objects. But, classes are also meant to

16

be types. That is what the very term “class” signifies. Classes are not stmctvraZ types in the
sense of [3, 13, 141, but behavioral types or abstract types. So, a semantics of classes should also
throw some light on how a class may be viewed as a collection of objects and what is common
to all such objects.

At the programming level (as opposed to the specification level), an abstract type is de-
noted by a scheme of representation and a definition of the operations on the representation.
Kamin’s classvals as pairs (Z,p) of instance variables and message environments precisely fit
this description. What is common to all the instances of a class is that they all have the in-
stance variables Z and share the behavior p. Thus, Kamin’s objects can merely reference their
classes to determine the behvior. It is hard to state what is common among our objects with
regard to their classes, since each object has its “own” behavior unrelated to other objects.

Kamin’s treatment of object-oriented languages is, in fact, remarkably close to conven-
tional abstract data type languages like Alphard [16] and CLU [8]. The operations (message
environments) in these languages are associated with abstract types (classes) rather than with
individual data objects. Alphard, in fact, treats the first argument of an operation as a special
one for obtaining the binding of the operation name, which brings it very close to modern ob-
ject oriented languages. Kamin’s methods s’imilarly use their first argument (implicit argument
denoting the receiver object) as a special one for obtaining the message environment. What is
different in Alphard is that the association between objects and types is determined statically. ..
If we extend it to allow dynamic association, we would obtain a framework much like that used
in Kamin’s semantics of SMALLTALK-80.

These observations point to new directions for future investigation. Kamin’s treatment is
able to depict classes as types, but, on the negative side, makes the internal representations of
objects visible in their denotations. Our treatment hides the internal representations, but loses
the ability to capture the commonality of the instances of a class. Is there a way to semantically
hide the representations, without losing the commonality of instances? The answer to this may
lie in semantic devices like existential types [5, 151 and dependent types [2, 121.

There is another question we may ask in this connection. Kamin’s semantic treatment
shows that if we extend an abstract data type language like Alphard with dynamic typing and
inheritance, we naturally obtain dynamic inheritance of the kind in our SmaUTalk. Simula
and C++, on the other hand, retain static typing and the inheritance obtained in them is
static inheritance of the kind in our InheritTalk. Is there a relationship betwen static typing
and static inheritance, on the one hand, and dynamic typing and dynamic inheritance, on the
other?

8 Conclusion

We have described the semantics of object-oriented languages by treating objects as closures.
Specifically, we interpret an object as a message environment (binding messages to methods)
with a hidden local environment (binding instance variables to values or locations). We have
shown that this framework can be extended to give f d descriptions of classes, instantiation,
and inheritance in the style of Simda as well as SMALLTALK-80.

We have also compared our approach to the semantics of SMALLTALK-80 given by Kamin
in a recent paper [lo]. Kamin interprets objects as pairs with local environments and class

17

.

references. Local environments are not hidden as in our semantics, and class references, rather
than classes, are used in denotations. We have discussed the various implications of these
differences.

Our semantics and Kamin’s semantics may be seen as two different views of object-oriented
programming. We associate operations with objects, and treat classes as abstractions (func-
tions) used to generate such objects. Kamin associates operations with classes, and treats
objects as data records with associated classes. The latter view is closer to languages based
abstract data types, whereas ours is closer to conventional functional programming concepts.

9 Acknowledgements

Sam Kamin’s work in formalization of the intricacies of SMALLTALK-80 was the starting point
of this work. Without his formalization, this would not have been possible. I benefited greatly
from discussions with him. Sam also implemented the semantics reported here, as well as his
own, in ML which aided my understanding of the issues.

References

[l] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, 1985.

[2] R. M. Burstall and B. Lampson. A kernel language for abstract data types and modules.
In G. Kahn, D. B. MacQueen, and G. Plotkin, editors, Semantics of Data Types, page ,
Springer-Verlag, 1984. Lecture Notes in Computer Science, Vol 173.

[3] L. Cardelli. A semantics of multiple inheritance. In International symposium on semantics
of data types, pages 51-68, Springer-Verlag, 1984.

[4] L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, pages 51-67,
Springer-Verlag LNCS Vol. 173, 1984.

[SI L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471-522,1986.

[6] W. R. Cook. A denotational semantics of inheritance (Eztended Abstract). Technical
Report, Brown University, July 1987.

[7] 0.-J. Dahl and K. Nygaard. An Algol-based simulation language. Comm. ACM, 9(9):671-
678, Sep 1966.

[8] B. Liskov et. al. CLU Reference Manual. Lecture Notes in Computer Science Vol. 114,
Springer-Verlag, 1981.

[9] A. Goldberg and D. Robson. SMALLTALK-80: The Language and its Implementation.
Addison-Wesley, Reading, MA, 1983.

18

[lo] S. Kamin. Inheritance in SMALLTALK-80: a denotational definition. In ACbf Symp. on
Principles of Programming Languages, Jan 1988.

[ll] R. M. Keller and G. Lindstrom. Approaching distributed database implementations
through functional programming concepts. In Intl. Conf. on Distributed Computing Sys-
tems, IEEE, Denver, CO. , May 1985.

[12] D. MacQueen. Using dependent types to express modular structure. In ACM Symp. on
Principles of Programming Languages, pages 277-286, 1986.

[13] D. B. MacQueen and R. Sethi. A semantic model of types for applicative languages. In
Conference on LISP and Functional Programming, pages 243-252, August 1982.

[14] R. Milner. A theory of type polymorphism in programming. J. Computer and System
Sciences, 17:348-375, 1978.

[15] J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. In ACM Symp.
on Principles of Programming Languages, pages 37-51, Jan 1985.

[16] M. Shaw. ALPHARD: Form and Content. Springer-Verlag, 1981.

[17] J. E. Stoy. Denotational Semantics: The Scott-Stmchey Approach to Programming Lan-
guage Theory. MIT Press, 1977.

[18] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA, 1986.

19

